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Abstract. Emphasising the close analogies between antiferromagnetism and neu- 
tral superfluidity, we develop a gauge-invariant quantum fluids description of non- 
bipartite Heisenberg systems. The antiferromagnet is treated as a spin superfluid 
with a rotational gauge invariance associated with the continuity of spin flow. We 
show how an extended Schwinger boson approach naturally incorporates the On- 
sager reaction fields generated by spin fluctuations, and correctly reproduces the 
semiclassical behaviour of spin wave theory in the large-S limit. The important 
short-wavelength physics of fluctuation-stabilised order is also capturrd by this de- 
scription. For two-dimensional Xelimagnets at small s, the method predicts that 
the twist will survive the loss of sublattice magnetisation, closely analogous to the 
biaxial-uniaxial transition of nematic liquid crystals. 

1. Introduction 

The renewed interest in two-dimensional spin-$ Heisenberg models [l] demands a new 
description of strongly fluctuating quantum antiferromagnets [2-41, one which encom- 
passes the semiclassical behaviour of spin wave theory and also survives the loss of 
sublattice magnetisation. Traditional spin wave methods are inapplicable when global 
spin rotation invariance is not broken, and to  proceed we must develop a gauge- 
invariant approach to magnetism. Two advances have been made in this direct,ion. 
Liang e t  a! [5] have written the ground state wavefunction of a bipartite antiferromag- 
net in a singlet RVB form, where long-range antiferromagnetic order is generated by 
rather short-range spin pairing. In a related development, Arovas and Auerbach [6,7], 
extending earlier work of Takahashi [8], have described two-dimensional bipartite mag- 
nets by incompressible fluids of paired spin $ bosons with density 2S per site. The 
essential observation here, due to  Wigner and Schwinger [ 9 ] ,  is that  a spin S is faith- 
fully represented by a symmetric wavefunction of 2s spin-4 bosons 

where m = (U', u2,  u3) are the Pauli matrices. Condensation of the Schwinger bosons 
reflects magnetic ordering [lo], whereas spin fluctuations are described by the 'normal' 
fluid. This analogy between antiferromagnetism and superfluidity has been stressed 
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previously for long-wavelength modes [11 , 12,133; the Arovas-Auerbach results suggest 
a feasible quantum fluids approach to  magnetism at  short length scales. Here we 
exploit this analogy; the antiferromagnet is no longer treated as a rigid magnetic 
structure, but rather as a spin superfluid (figure 1.). 

25 bosons 

Figure 1. The semi-classical vemus the quantum fluids approach to magnetism. 
( a )  Illustration of how a spin S is built with 2 s  bosons. ( b )  Schematic diagi-arn of 
the two fluid picture; the normal fluid describes the spin fluctuations while classical 
magnetism is the condensate. 

Local continuity of flow, relating the current divergence and local density fluctua- 
tions, is an essential feature of fluidity. In a charged quantum fluid, local continuity is 
associated with local gauge invariance. Specifically, if 9 is the complex order param- 
eter, then under a gauge transformation 

Q(z) --f exp(iO(z))Q 

the condition that  the free energy remain invariant establishes the local continuity 

In neutral superfluids, where currents do not couple to  the physical electromagnetic 
vector potential, one can nevertheless introduce a fictitious vector potential solely as a 
book-keeping device to  keep track of the current correlations [14]. In this case the free 
energy still displays a local gauge invariance, but under a gauge transformation the 
vector potential remains a pure gauge A = VO(z). A similar approach can be taken 
in quantum spin systems. Conventionally we attribute a Heisenberg antiferromagnet 
with global  spin conservation associated with spin rotational invariance. However, as 
in the neutral superfluid, the motion of spin is a continuous process and there is a spin 
continuity equation relating divergence of spin currents to the precession of the local 
moments. In a completely analogous fashion to a U ( l )  superfluid, we can associate 
current conservation with a local gauge invariance of a curl-free spin vector potential. 
This fictitious field not only permits us to keep track of the spin currents, it also 
enables us to  reparameterise our local spin coordinate axes in both space and time, 
provided that we also change the associated rotational gauge fields. For example, the 
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long-wavelength action for a Heisenberg antiferromagnet in a magnetic field B is the 
non-linear sigma model [15,16], 

where M = Si i  is the staggered magnetisation, c is the spinwave velocity, B the 
magnetic field and A is a fictitious spin vector potential (pure gauge) used for de- 
termining the spin currents. The field dependence of the non-linear sigma model has 
been discussed by Andreev and Marchenko [15]. Equation (1.4) has the same form as 
the Landau-Ginzburg classical action for a conventional Bose superfluid 

Here q5 is the phase of the condensate, p s  is the superfluid density, c is the speed of 
sound and the charge q is set to zero for a neutral system. 

From a comparison of equations (1.4) and (1.5) we see that in a magnet the spin 
S plays the role as a superfluid density, 1/JS is the Bose mass, and the magnetic 
field acts as a chemical potential. In strict analogy with the U (  1) superfluid, coherent 
spin currents result from the broken SU(2) rotational gauge invariance associated with 
global spin conservation [17]. These persistent spin currents 

ji = -6I /SA,  = JS2Fii i  x ii pi = (Vi + A , x )  (1.6) 

correspond to  twisted spin configurations relieved only by topological singularities or 
by spin flow from the boundaries. In equilibrium, the presence of a magnetic field B 
induces spin precession 

analogous t o  the precession of phase in a superfluid. Furthermore, a gradient in B 
produces a gradual increase in the spin twist, and thus a constant rate of change in 
the spin current 

$,j, = dj , /dt  + B x jd = - JS2Vi B ,  (1.8) 

where B ,  is the field component perpendicular to  the staggered magnetisation. Equa- 
tion (1.8) is the spin analogue of the Josephson equation 

dj,/dt = - (hps /m)Vip .  (1.9) 

We note, however, that  a spin Meissner effect does not occur in Heisenberg systems; 
as in all neutral superfluids, the gauge fields have infinite stiffness. In table 1 we 
summarise the analogies between neutral and spin superfluidity. 

A rotational invariant treatment of quantum antiferromagnet,ism must capture the 
essential physics of spin fluctuations, and in particular must extend the concent of the 
Weiss field to  cases where the local moment vanishes. Such a generalisation has been 
discussed by Brout and Thomas [lS, 191 in the context of disordered Ising magnets; 
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A.F.M./ 
NEUTRAL SUPERFLU'D SPIN SUPERFLUID 

La2 Cu 0, , Kp Ni F 4  He-4 
Spin-polarized H Soin Dolarized H 

PARTICLE NO./ SPIN/ SU(2) 

S w m Y  
QUANTITY/ 

PERSISTEM Particle current Spin current 
U(1) 

CCNlUGATE 
POTENTIAL 

CHEMICAL POTENTIAL MAGNQK; FIELD 
P B 

COLLECTIVE 
MODES 

Spin waves/ 
Twist wave 

First sound 

they point out that  Onsager's idea [20] of a non-orienting reaction field applies to  
spins. Specifically, a spin is sensitive to  the field it would experience in an empty 
cavity. In the treatment of Brout and Thomas, this orienting field is the sum of the 
Weiss field in the uniform sample and the reaction field B, of the empty cavity where 

B,.(R,) = -2p(si). (1.10) 

The Schwinger boson approach provides a microscopic realisation of B,. , which hitherto 
has not been stressed. Physically, the concept of a reaction field involves changing the 
total value of the spin and computing the resulting field 

Roton 

B ,  = -J . .SS .  (1.11) 
a3 3 

Quantum 
exchange modes 

where J i j  is the exchange constant between sites i and j ,  and 

is the change of magnetisation at  site j due to the formation o f a  cavity a t  site i. Thus, 
the concept of a cavity reaction field exists within the context of a grand-canonical 
ensemble of spins. 

Microscopically, an Onsager field is generated by a term i n  the Hamiltonian of the 
form 

H I  = - - y p ; ( T ) [ s i ' s i  - S(S + l)]. 
i 

(1.13) 

Such an interaction is zero in the Gibbs ensemble of definite spin; however if we 
represent the same system by a grand-canonical ensemble of Schwinger bosons in a 
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fluctuating chemical potential a t  fixed density, then the Onsager reaction field can be 
identified with the constraint. Formally we may rewrite the Onsager reaction field in 
the more familiar chemical potential form 

= n6[ (n i /2 ) (n i /2  + 1) - S(S + l)] 

= nqs + i)(., - 2S)] 

i , T  

i , r  

where the constraint term is rewritten as 

(1.14) 

(1.15) 

In other words, a spin system of definite S can be modeled as a grand-canonical 
ensemble of spin bosons moving in the background of a fluctuating Onsager reaction 
field. 

Following Brout and Thomas, in a linear response approximation [19] the Onsager 
reaction field is directly proportional to the magnetic fluctuation energy per site 

(1.16) 

A similar result appears in the mean field Schwinger boson approach. Since, in the 
absence of a sublattice magnetisation, (Si * S j )  is determined by fluctuations, a feed- 
back exists that  maintains the fluctuation dissipation theorem. By continuity, as an 
ordering transition is approached, the reaction field fluctuates more and more slowly; 
eventually freezing into the constant Weiss exchange field. 

The Onsager reaction field was first applied to  Heisenberg spin systems by Taka- 
hashi [B], who employed a reaction field to  extend spin wave theory for the one di- 
mensional ferromagnet to  finite temperatures. Arovas and Auerbach subsequently 
employed an Onsager field in the context of a Schwinger boson approach to  ID ferro- 
magnets and 2D antiferromagnets [6]. Takahashi later showed that his approach [21] 
could also be extended to  antiferromagnets. Indeed, the results of the Schwinger boson 
and Takahashi methods are qualitatively similar in the paramagnetic phase: the choice 
of one method over the other is largely a question of taste and emphasis. Though we 
have chosen to  employ a Schwinger boson approach, emphasising the rotationally in- 
variant aspects of the problem, a similar line of development could be made with a 
generalisation of Takahashi's methods [B, 211. 

A second aspect of strongly fluctuating spin systems concerns the physics of 
fluctuation-stabilised order. In non-bipartite magnets, spin wave fluctuations can 
select new forms of long-wavelength order from a manifold of degenerate classical con- 
figurations, Villain's 'order from disorder'. Here the short-wavelength spin fluctuations 
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remove special phason modes present in classical magnets, producing small ‘quantum 
exchange gaps’ in the spinwave spectrum [22]. These new correlations develop inde- 
pendently of the ordered moment and are a sort of spin Van der Waals interaction. In 
the fluids analogy, these quantum exchange modes are the spin analogues of rotons in 
4He. 

A testbed for the study of non-bipartite magnets is the two dimensional frustrated 
Heisenberg model 

(1.17) 

where the Fourier transform of J ( R )  is 

J ( q )  = 2J1(c, + cy)  + 4J,(C,Cy) + 2J3(c2, + cZy) + . . * (1.18) 

in which cy = cosq,a, ( I  = z,y) and J , ,  J 2 , J 3  are first, second, and third nearest 
neighbour couplings respectively. Ioffe and Larkin [23] have emphasised that even if 
the higher order couplings J ,  where p 2 3 are originally zero, they will be generated 
by non-linear self-energy effects. Here we are interested in the case where the bare 
values of J , ,  J ,  >> J 3 .  In particular, in the region of the point J ,  N 2 J ,  the system has 
a large classical degeneracy; here quantum fluctuations stabilise an incommensurate 
twisted phase with characteristic wavevector Q preferentially aligned along the z or 
y axes. At a large but finite critical spin value S, the sublattice magnetisation is 
suppressed, leading to the absence of a local moment and a large-S liquid phase. A 
principal aim of this paper is to  develop a method that will probe the spin correlations 
in all regions of this phase diagram, both with and without the presence of a sublattice 
magnetisation. In the ordered state, our results are in good agreement with 1/S2 and 
Polyakov scaling analyses. Furthermore, we discuss the existence of ‘twist waves’, 
and the possibility of a ‘twisted spin nematic’, two phenomena not anticipated in a 
conventional large-S approach. 

The layout of the paper is as follows. We begin with a gauge-invariant formulation 
of the Heisenberg model (section 2)’ and discuss its mean field decoupling in section 3. 
Next we present the general class of wave functions resulting from our approach (sec- 
tion 4).  Spin rotons, quantum exchange gaps and Villain’s ‘order from disorder’ as a 
simple example of the consequences of spin wave bound-states are discussed in sec- 
tion 5 .  Section 6 examines the Goldstone mode excitations of quantum helimagnets, 
demonstrating how triplet spin pairing of magnons associated with a twisted structure 
results in the formation of an additional longifudinal Goldstone mode. The non-linear 
sigma model for a helimagnet and its biaxial order parameter are presented in sec- 
tion 7;  the coefficients for this long-wavelength action are derived in an analogous 
fashion to  Gorkov’s calculation of the Landau-Ginzburg coefficients for BCS theory. 
In section 8 we predict the existence of a twisted spin nematic, one with long-range 
twist but with no sublattice magnetisation. This spin nematic violates parity but not 
time reversal symmetry, and has interesting implications for charged systems. We 
conclude with a brief discussion of future applications of this approach. 

2. Gauge-invariant formulation of the Heisenberg model 

We begin by rewriting the frustrated Heisenberg model in a form that explicitly dis- 
plays the rotational gauge invariance associated wit!i continuity of spin flow; in a 
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Lagrangian formalism, the partition function can be written 

where H is the Hamiltonian for the frustrated Heisenberg model, written in terms 
of Schwinger bosons. The fluctuating Onsager potential X j  imposes the constraints, 
generating local Onsager cavity fields. Spin indices on the Bose fields have been 
suppressed ( b t ,  = ( b t j T ,  b t j l ) ) .  

Under an independent rotation of the spin basis a t  each site 

the spin transforms under the adjoint representation of SU(2) 

Si = f b ( l ka ,pb ia  = exp(-Bj x)Sj .  (2.3) 

The transformed Lagrangian is then Cg = CO + H g ,  where 

1 
H g  = 2 Ji jSi  exp(-Aij x ) S j  - €I j .  s j .  (2.4) 

j 

The fictitious magnetic field B j  = exp(-Bj x)d,Bj (a, E iaT) is induced by the rotation 
of the spin reference frame. Primes have been dropped for clarity. The exponential 
exp(-Aij x )  is a shorthand for the O(3) rotation matrix 

[exp(-Aij x)lPq = [exp(-Oix)exp(Oj x)Ipq. (2.5) 

A smoothly varying gauge transformation g j  = g ( R j ,  7) is locally equivalent to  a 
a twist. For a uniform twist of the co-ordinate axes through an angle e( R )  = Q R 
about the axis f ,  

g(R) = exp(iQ - R i a  u / 2 )  (2.6) 

and in this case 

where 

A, = Q l i  (2.8) 

can be considered to  be a spin vector potential. We shall generalise this form to the 
case of smoothly varying twist fields 

A , ( R ,  7) = &r(R, M n ,  7) .  (2.9) 
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The gauge invariant form of our Hamiltonian is then 

(2.10) 

Written out explicitly this takes the form 

Hg = H g  + - 
2 Jij sinBijLij - (Si x S j )  

(2.11) 

H,g = icJij{(si.L,j)(sj 1 *Lij)+cosOij[s ,  ‘ S j  -(Si.Lij)(sj *Lij)]} 

where BijLij = Aij. Here, Lij is the axis of rotation required to  rotate co-ordinate 
system j into co-ordinate system i, and 8ij  is the angle of rotation between the two 
local co-ordinate systems. The Lagrangian Cg is now explicitly invariant under the 
local rotational gauge transformation 

B j * ( $ ~ ) + B j g t j * ( $ ~ ) g j  -gtjd,gj  

e x p ( - l A , d R , x )  - e x p ( B i x ) e x p ( - l A , d R , x )  exp(-Bjx). 

(2.12) 
4 bti +b/’  = bt .g. 

Expanding the equation for B’ and taking spatial derivatives of both sides of the 
equation for A,, we find that the transformation laws for the magnetic field and spin 
vector potential take the form 

A, - A’, = eex [A, - (V,B)] 

B --f B’ = eex [B  - (a ,B) ]  (a, E 3,) 
( 2 . 1 3 ~ )  

where t = - i r  denotes real time. For infinitesimal 8,  these transformation laws can 
be re-written in terms of gauge covarimt derivatives 

A, + A’, = A, -J?@ (J?, E V, + A , x )  

B ---i B ’ =  -&e (8, z ia, + ~ x ) .  
(2.13b) 

The invariance of the physics under local co-ordinate transformations is directly 
related to  the continuity of spin flow. Since the partition function is independent of 
the gauge, the variation with respect to  t,he rotation phase 8, must vanish, which 
implies local spin conservation. The variation of the partition function under a local 
gauge transformation is 

6 2  = J D[X, b] exp ( - / ~ g ( ~ ) d ~ ) ( q , ( e )  dB, - T E ) . 6 e i = o .  a A i k  (2.14) 

Evaluating the quantity inside the integral, we have 

+ x j i - + k  = 
k 

(2.15) 
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where the spin current from i to  k is 

Setting A, = 0, the spin conservation equation (2.14) can be re-written as 

(2.17) 

which is the equation of motion for the precession of a quantum spin. From a quantum 
fluids perspective, the equation of motion is then equivalent to  the the condition of 
spin conservation. 

Finally, if we use (2.10) rather than (2.4), we find 

6 2  = J D[X, b] exp (- J W) d r )  (gt  (&) + F, (&)) 7) = o 
(2.18) 

which yields the continuum version of the spin conservation law, in terms of the spin 
current density 4 

(2.19) 
aGg  

8-41 R 
4 ( . , r ) = - - = - C J ( R ) R , [ S ( r ) x  s* (T -R) ]  

3. Mean field decoupling of the Heisenberg model 

If we gauge transform the Bose fields b + b g  inside the path integral, then the La- 
grangian becomes C -+ L g .  The integration measure is gauge invaria.nt, D[b] = D[bg], 
so i t  follows that the path integral is also gauge invariant 

z=zg= dX, 1 D[b] exp (- 1 C ~ ( T )  d r )  . (3.1) 

It proves convenient to  average over gauges, using a normalised weighting function 
F (g )  : l D [ g ] F ( g )  = 1. We then write 2 = JdgF(g )Zg ,  or 

= ,*0t2irT 

dXj / %7, blF(s) exp (- / .cg(.) d r )  . (3.2) 

We shall select the weighting function that simplifies the decoupling procedure. In 
principle, there are many ways of decoupling the spin interaction; with the exception 
of collinear magnets, the spontaneous development of a twist (Si x S j )  implies parity 
violation, and thus both even and odd pairing correlations. A key developmental step 
in the quantum fluids approach to frustrated magnets is the realisation that  arbitrary 
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magnet configurations can be described by the action of one, or more twists applied 
to  a ferromagnetic configuration. We shall simplify all calculations by working in 
a twisted co-oordinate system where the spin correlations are locally ferromagnetic. 
Formally, this is equivalent to integrating over the spin gauge fields and imposing a 
gauge fixing condition on the spin configurations 

(sg x s;, = 0 (3.3) 

The transformed Lagrangian now becomes 

where an integral over the Lagrange multipliers X i j  fixes the average gauge; in this 
frame of reference the twist vanishes and locally ferromagnetic even parity pairing 
results in both the particle-hole and Cooper channels. Thus in the twisted reference 
frame the magnet can be treated as an even parity, triplet paired Bose fluid. 

We shall restrict our attention to the cases where the equilibrium magnetic struc- 
ture is uniformly twisted about an axis L 

8j = ( Q  * R)L. Sj = exp[(Q R , ) L x ] S ;  (3.5) 

The special case of collinear antiferromagnets is recovered when 2Q E 0. We now 
introduce the triplet Cooper and the singlet particle-hole pairing fields 

and rnake the pairing ansatz 

(BL) = 217, L 

(DA) = 2cr, 
( 3 . 7 )  

where L is the twist axis and 17, and cr, are even functions of q. In the classical limit 
S + CO, these pairing correlations become a ,  = 17, = SS, + O(1). 

The terms in the Hamiltonian containing Si x Si violate parity and will mix even 
and odd parity pairs. For stationarity with respect to  X i j ,  these terms must vanish a t  
the saddle point 

At the saddle point, the twisted Hamiltonian is then 

1 
H = -CJij{r'+'si.sj ++-'[si.sj - 2 ( s i . L ) ( S j  41) (3.9) 

i j  
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where y(*) = i ( l f c o s ( Q  * Ri j ) ) .  The terms in the Hamiltonian can now be decoupled 
into even parity pairs 

(3.10) 

where B:;)’ = & . B t j j .  Restricting our attention to zero-momentum pairing we can 
write the coupling as a BCS Hamilt,onian 

H,,, = (1/4) ~ [ J ~ , , D s t D q I  - J iq ,Bg) tB$) ]  - N J ( Q ) S 2 / 2 .  (3.11) 
Q Q’ 

Here N is the number of sites and the pairing potentials are 

Jkl = i { J ( q  + 4’) f i[J(q + q’ + Q) + J ( q  + 4’ - Q)I},. (3.12) 

The subscript S denotes symmetrisation with respect to  q and 4’. Here, the first 
and second terms are the pure ferromagnetic and antiferroma.gnetic pairing potentials 
respectively. Note that the constraint has played a role in deriving this symmetric 
pairing Hamiltonian. The same mean field theory can also be obtained from a naive 
Hartree-Fock decoupling, of the Hamiltonian 

1 
H’ = H + - J i j  cos(Q - R i j ) ( n i n j / 4  - 9). (3.13) 

The second term is zero under the constraint, but generates a more symmetric mean 
field decoupling of the problem. The resulting mean field Hamiltonian is 

HMF = c{Chq - A ) [ b t q , b q ,  + b - , L b + - , ~  - [Aqbtqtbt-,J + H C I )  

i j  

4 

+ E, + 2NA(S  + $) (3.14) 

where we chose & = 2, and 

E, = x(A, [ J - ] ;$A, ,  - h,[J’];~,hb) - N J ( Q ) S 2 / 2  (3.15) 

is the spin condensate energy. The quasiparticle energies of H,, are w, = [(i,)’ - 
Aq2I1/’, where k ,  = h, - A, so the total mean field free energy per unit cell is 

F = x 2 T l n  [2sinh(/3wq/2)] + E, + NX(2S + 1). 

P Q’ 

(3.16) 
q 

Differentiating with respect to h,, A,, and X yields 

(3.17) 



7944 P Chandra et  a1 

where sq J d 2 q / ( 2 ~ ) 2  , and 

Pa,, 277,) = ((D+,), ( B t ) + ) )  = [cOth(P~, /2) /~,1(~, ,  A,). (3.18) 

The  last expression in (3.17) is the mean field constraint. For ferromagnets (Q = 
0), the antiferromagnetic pairing potential J -  vanishes, and these equations revert 
to  Takahashi's equations for ferromagnets [8]. For bipartite antiferromagnets, the 
ferromagnetic pairing potential J +  vanishes, and the second equation reverts to  the 
Arovas-Auerbach [6,7,21] result. 

Finally, in order to  determine Q, we differentiate the free energy with respect to 
Q 

At zero temperature and large-S, the bosons condense at  q = 0,  and there is a pole 
in the occupation functions cr, - 17, - S*6, corresponding to  a finite magnetisation 
S*. As S -+ CO, the pole dominates, and S*/S -+ 1, so 

(3.20) 

X takes the smallest value consistent with U,, = 0,  which gives X = SJ(Q) .  Thus the 
dispersion predicted in the large-S limit is 

W: = S 2 [ J ( q >  - J(Q)I[$(J(q + Q )  + J ( q  - Q)) - J(Q)l (3.21) 

which is exactly the spin wave spectrum of the twisted magnet [24]. The stability 
equation (3.19) becomes simply VQJ(Q) = 0,  selecting allowed values of Q in the 
large-S limit. 

4. Ground-state wavefunction: relationship with RVB 

Let us briefly examine the type of ground state wave function furnished by this ap- 
proach. The Bogoliubov quasiparticles for the mean field Hamiltonian have the form 

atqo = U bt - v b 
P qo P -,-U 

= i[(Lq/uq) + 13 uqvq = (Aq/2u,). 

The mean field ground state wavefunction that is annihilated by the quasiparticles 
has the Jastrow form 

J 

where f, = (v,/u,). In the thermodynamic limit, N -+ CO, f, ---+ 1 and the ground 
state develops an infinite accumulation of particles in the q = 0 statme: (bt ,)  + JNS", 
permitting us to divide the wavefunction into a normal fluid and condensate 

IS) = lQN)I*C) (4.3) 
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where 

(4.4) 

In the  untwisted reference frame, the fully constrained spin wavefunction is then 

where gt = exp[-i Cj Q . R j S f ]  twists the wavefunction and Ps projects the Gibbs 
ensemble with 2 s  spin quanta per site. If we now write the Bose fields in terms of the 
untwisted creation operators, denoted here by itqu 

then the  twisted normal fluid and condensate are 

Here f$*) = f fq--Q/2] and 8fq = -&fqc2it_, .  The coexistence of even and 
odd parity pairing in this wavefunction generates the twist. In real space, this state 
can be written as an  RVB wavefunction 

(4.8) 

where the pairing wavefunction is f ( R )  = f c o s q - R .  This is a generalisation of 
the Jastrow wavefunction considered for bipartite lattices [6,5]. 

In the  special cases where the magnet is collinear, f, = -fqtQ, so fit' = 0 and 
triplet pairing vanishes in a collinear magnet. The  normal state is accordingly an  
isotropic singlet. In general, the static spin correlations associated with this ground 
state are readily evaluated by re-expressing the spin operators in terms of the quasi- 
particle operators. In the twisted reference frame, the spin operators take the form 
S(R)  = 

q .q 

S, exp(iq - R),  where 



7946 P Chandra e t  a1 

Here S* = S” k i sy ,  IC* = IC q / 2 ,  (u*,v*) = ( u k i  , .ai) and the quasiparticle- 
hole terms denoted by PH have been dropped, since they annihilate the ground state. 
Evaluating the  expectation value of the static spin correlations in the ground state 
yields 

(4.10) 

where spin components are measured in the twisted reference frame and x * ( q )  = 

and 7, = uqvq we find tha t  in real space 
$ Cq(utvUf  - u - v + ) ~ .  By re-writing the coherence factors in terms of a,  = ( U :  - 5) 1 

where 

(4.12) 

Transforming back to the untwisted reference frame, the static spin correlations are 

- sin Q . R cos Q - R 
( S Q ( z ) S b ( d ) )  =xt (R)  s i n Q - R  c 0 s Q . R  ] +,y- (R)  [ 0 

0 

+ (SQ(.)Sb(zl)),. (4.13) 

Here R = z - z’, and we have separated out the condensate component 

cc‘ sc‘ 
(SQ(.)S*(d)), = [S*I2 [ C d  ss’ 0]  (4.14) 

where (c, s) = (cos Q - z, sin Q - z) and (c’, s’) = (cos Q z’, sin Q z’). For a collinear 
magnet, which is a singlet in the absence of the spin condensate, [&’(El) + q2(R)] = 
[@’(R) - q2(R)] cos Q - R, and the spin correlat,ions are isotropic, apart  from the 
uniaxial component derived from the condensate. By contrast, if the magnet is non- 
collinear, i.e. 2 Q  f 0,  then the zero-point fluctuations are triplet paired, and the 
normal fluid exhibits uniaxial order defined by the axis of the twist. The  combined 
system of condensate plus anisotropically paired spin fluid possesses bzaxzal order 
defined by the sublattice magnetisation and the twist. 

I t  is illuminating to examine how the presence or absence of a sublattice mag- 
netisation depends on the spin pairing. At zero temperature, we may rewrite the 
constraint equation as 

(4.15) 

A sublattice magnetisation will in general occur for sufficiently large S ,  provided tha t  
the integral on the right hand side is finite. In general, it is not necessary to have 
infinite range bonds, and the higher the dimension, the more readily short range 
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pairing can give rise to  an infinite range sublattice magnetisation. As an example, 
consider a nearest neighbour RVB wavefunction for a square 2D lattice of the form first 
considered by Sutherland. Here, for S = 4 

(4.16) 

where the sum is over all possible bond configurations {i , j} and h ( R )  = sin(Q.R/2),  
Q = (T, T )  for nearest neighbour bonds, but vanishes otherwise. In this state triplet 
pairing vanishes. Putting h ( R )  = f ( R )  s in (Q-R/2 ) ,  then, up to  a normalisation 

In the Jastrow generalisation of this wavefunction to higher S ,  normalisation of fq 
is achieved from condition (4.15). Since fi - f2( l  - q 2 ) ,  as f +. 1, the fluctuation 
integral in (4.15) diverges in two dimensions - / n [ l / ( l  - f’)], and an arbitrarily large 
value of S can be achieved without developing a condensate a t  q = 0. From this 
argument it follows that  the Sutherland state, and its generalisation to  large-5’ will 
always be disordered. Clearly, phase space and the form of the RVB wavefunction 
in momentum space plays a strong role in determining whether there is a magnetic 
condensate. For a three dimensional Sutherland State, the phase space integral that  
determines S is convergent (S, M 1.57), even when fqlo = 1, suggesting that for larger 
values of S > S,, the 3D Sutherland wavefunction will exhibit long-range magnetic 
order. 

5 .  ‘Order from disorder’ 

Nee1 antiferromagnets are a very special class of spin structure, where the magnetic 
vector Q characterising the long-range order ( S ( R )  - S(0))  - S2  cos Q R lies at the 
zone centre of the Brillouin zone. More generally however, the introduction of frus- 
tration into the Heisenberg model 

H = t J(Rij)Si - sj 
i j  

J(Q) = 2Jl(C, + Cy)  -b 4J2(C,Cy) + 2J3(C2$ -k Cgy)  + . .  

forces the Q vector to  a point of lower symmetry. In this case, the ground-state violates 
both the spin rotation symmetry and the lattice rotational point-group symmetry. 
Whereas the latter can be understood in terms of a classical picture of magnetism, 
the break-down of discrete lattice symmetry is actually driven by spin fluctuations in 
the normal fluid. This phenomenon was first studied by Villain [25,26], who called it 
‘order from disorder’. 

Consider the class of helimagnetic structures [27,28], where the spatial precession 
of the magnetisation M ( z )  defines a local SO(3) co-ordinate basis (C?~,&~,Z~), with 

M ( z )  = s S l ( a )  V I M ( z )  = Q,&, x M(a) el = [cos(& - a)<+ sin(Q a ) j ] .  

( 5 . 2 )  
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Classically, this state has energy E,  = N S 2 J ( Q ) / 2 ,  and is favored when V , J ( Q )  = 0 
away from the zone centre. For instance, in the frustrated Heisenberg model, for small 
J3,when IJ, - 2 J 2 (  < 4J3, a helimagnetic state with Q = ( T ,  0) or (T  - 0, T )  forms. 
The spinwave spectrum for a helimagnet is 

= (S I2[J (q )  - J ( Q ) ] [ $ ( J ( Q  + Q )  + J ( q  - Q ) )  - J ( Q ) I .  ( 5 . 3 )  

In helimagnets there is no axial symmetry: spin rotation symmetry is fully broken, 
and action of infinitesimal rotation operators on the spin condensate gives rise to  three 
associated Goldstone zero-modes a t  q = &(Q, 0). In the absence of spin fluctuations, 
the environment surrounding the spin condensate has the full crystal point symmetry, 
and the Goldstone mode structure reflects this symmetry. Since Q is no longer a t  
the zone centre, the spectrum also contains two additional zero-modes at  q = kQ’ = 
k(QY, Q,). Physically, these modes correspond to the application of a twist about an 
axis perpendicular to  the first, a t  wavevector Q k Q’. These modes are O ( 3 )  phasons: 
zero modes that distort the structure continuously by redistributing the exchange 
energy amongst the bonds. Fluctuations, both quantum and thermal, remove the 
phason zeromodes. Zero-point and thermal fluctuations are minimised in the structure 
with maximum ferromagnetic spin alignment, stabilising the helimagnet against the 
development of a double twist. Spin fluctuations sense the Q vect,or and generate a 
weak violation of lattice symmetry in the environment surrounding the classical spin 
condensate. Consequently , new gaps appear in the spin wave spectrum, leading to  
roton-like minima in the spin wave dispersion [22] (see figure 2). 

0 GOLDSTONEMODE 
0 QUAMUM EXCHANGE GAP 

0 GOLDSTONEMODE 
0 QUAMUM EXCHANGE GAP 

Figure 2. Location of Goldstone modes and quantum exchange gaps for ( a )  a 
helimagnet ( Q  = (T - 0 , ~ ) )  and ( b )  a collinear magnet ( Q  = (0,~)) in momentum 
space (twisted reference frame). 

To see this effect in action in the quantum fluids approach, we reintroduce the 
residual zero-point fluctuations from the large-S spectrum into the right-side of the 
pairing equations and iterate once. From the constraint equation, the magnetisation 
pole is renormalised by the fluctuat,ions S’ = S - S,, where S, + f = x q a q ,  as in 
spin wave theory [29 ,23]  (figure 3 . ) .  The shift 6X in X is adjusted t,o preserve the 
Goldstone mode a t  q = 0 which gives, a t  zero temperature 
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1 IS 

J2/2J1 

Figure 3. Phase diagram obtained by comparison of the classical 
netisation and the first quantum corrections, evaluated for J3 /  Ji 
classical spin configurations. 

sublattice mag- 
= 0.1. Insets: 

If we interpret X as the Onsager reaction field, then the first term is the Curie-Weiss 
exchange field; the second term is derived from the reaction of the normal fluid, and 
is related t o  the zero-point energy per site, as found by Brout and Thomas [18]. 

A simple example of ‘order from disorder’ occurs in the case of large diagonal 
coupling J , / 2 J2  = E < 1, where the minimum of J ( Q )  is a t  Q = (0, a) or (a, 0). 
Classically, the state behaves as two interpenetrating Ndel sublattices that can be in- 
dependently rotated. This is the phason mode. The spin wave spectrum has rotational 
Goldstone modes a t  q = 0,  Q and phason modes a t ,  Q’ = (Qy, -Q,) and (a, a). After 
the first iteration in the pairing equations, the spectrum remains gapless a t  q = 0,  Q ,  
but acquires a quantum exchange gap A, a t  Q* = Q’, ( T ,  7) , giving rise to  a roton 
minima in the spectrum of form w ~ + ~ .  = [A: + (c,q,)2 + ( ~ ~ q , ) ~ ] ’ / ’ .  Taking J3 = 0,  
Q = (0, a), corresponding to  ferromagnetic correlations along the z axis, the pairing 
fields are 

After the first iteration of the pairing equations, the quantum exchange gap at  Q* = 
(a, 0) and (a, a) is 

(5.6) 
(A,)’ = 2[hQIS&. - AQ.bAQ.] = 326(1 - €)S(J,)’ mq5(q) d’q 

where 

(c; - C Z j E  + c& - 1) 
4(Q)  = + O( 1). 

(1 + EC,)’ - (c,cy + €Cy)’ 
(5.7) 
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The same result can be obtained in spin wave theory from spin wave interactions [22]. 
For small E ,  

which was also recently derived in the context of a sigma model analysis of this prob- 
lem [30]. This gap stabilises the collinear phase, and a t  distances 1 > 1, = c/Al 
(c - m) the two sublattices become locked together by the short wavelength fluc- 
tuations, breaking the 2, lattice symmetry to 2,. This transition can be regarded as 
a 'spin binding' transition in which the effective spins of the moment,s are doubled. 

The basic character of this transition is set by the constraint equation, which self- 
consistently determines the temperature dependent quantum exchange gap. In the 
large-S limit, tjhe spin fluctuations accumulate in the vicinity of the Goldstone modes 
and the quantum exchange gaps. If we approximate the spectrum in the vicinity of 
these points by 

(5.8) 
c 2 ( q  - Q i ) 2  + A: 
c 2 ( q  - Q ; ) 2  + A: + 

( Q i  = 0, Q )  
(Q;  = Q', (n,  TI)  

w 2  = { 
P 

where 

At = c ~ / [ ( T ) ~  = i ( q  = 0)2 - A(q = 0)2 

(A, )2  = 2[LQ.6LQ. - AQ.6AQ.] = c 2 / 1 i  
(5.9) 

and SA,, &A,, Sh, are the deviations from the zero temperature, large-S values of 
these quantities. Here, we have assumed for clarity, an isotropic spin wave velocity 
c = 4 J 2 S a ,  valid in the limit of small J , .  In the large-S limit, the finite temperature 
constraint equation is then 

2nc/a  2 n c / a  1 s+5=&[s , .  + / J 7 3 3 ] d - 4 $ ]  (5.10) 

where the change of variables 2 = c l q  - &,I has been made and a cut-off has been 
imposed on the momentum integrals the neighbourhood of the Goldstone and phason 
modes. At high temperatures where A, = 0,  the spin bosons accumulate equally near 
both minima in the excitation spectra. Carrying out the frequency integrals, the high 
temperature behaviour of the spin correlation length ( = c/A, is 

with coupling constant 

(5.12) 

This result reproduces the one-loop scaling equations for the 2D Heisenberg antiferro- 
magnet derived by Chakravarty e t  a1 [31]. At low temperatures, once ( ( T )  - I,, the 
logarithmic divergence associated with the spin roton modes is cut-off by the quantum 
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exchange gap. The spin concentration is now concentrated solely in the region of the 
Goldstone modes, effectively doubling the spin S of the system. The low temperature 
behaviour of the spin correlation length is then 

where the renormalised coupling constant is given by 

(5.13b) 

The factor of two difference in the exponent for ( results from the freezing of the out- 
of-phase ‘phason’ modes, locking the two Nkel sublattices together on length scales 
greater than I,. This results in the replacement 

J,S2 ---$ 2J2S2 (5.14) 

effectively halving of the coupling constant. The additional logarithmic correction 
accounts for the renormalisation of the coupling constant by fluctuations with wave- 
lengths between a and I,. 

These results essentially reproduce the results of scaling theory [30]. The transition 
from the high-temperature to the low-temperature regime is accompanied by an Ising 
phase transition associated with the breaking of the discrete lattice rotation symmetry 
from 2, to  2,. The associated soft king variable is 

1 
4s2  

o(R)  = - [s, - S,] - [s, - s,] (5.15) 

where the Si (i = 1 , 4 )  are the four spins surrounding the plaquet, a t  position R. In 
our mean field theory, we can estimate the king transition temperature by evaluating 
the temperature a t  which the Bose pairing becomes anisotropic. The general form of 
the Bose pairing field is 

I * 

A, = 2A,cy + 4A2c,cy. (5.16) 

The development of a finite AI results in the breaking of lattice symmetry. Extracting 
the coefficient of c, in the the pairing equation (3.17) for A, we find 

(5.17) 

In the limit that  AI + 0,  we obtain an equation for the mean field Ising transition 
temperature 7 = (pi)-’ 

(5.18) 

where the differential is to  be evaluated at  A, = 0. This equation provides a more 
quantitative estimate of the Ising transition temperature, than that provided by the 
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qualitative condition /,(q) = E(q) used in the scaling theory treatment of this prob- 
lem. As the gap A, decreases, the last term in this expression diverges, so there is 
always an Ising transition, so long as the magnetic moment is finite. For small J , ,  
q becomes small, and the integral is dominated by the second term. Evaluating the 
logarithmic contributions, we find 

1 4 7  - 
J ,  TA: 

or 

(5.19) 

(5.20) 

A similar equation was previously derived from the scaling analysis. As J ,  is increased 
beyond this small critical value, the Ising temperature increases, rising to a maximum 
value near the fully frustrated point J ,  = 25,. 

The spin-binding effects of ‘order from disorder’ on more general incommensurate 
magnetic structures are more striking. The leading order corrections to the Schwinger 
boson spectrum now lead to the development of four  quantum exchange gaps at  q = Q 
(A,) and a t  q = &’ (A,). A, is the quantum exchange gap that appears once the 
lattice symmetry of the environment of the spin condensate is broken, and the ‘double 
twist’ phason acquires a stiffness. The second gap A, appears a t  points q = &Q 
where we would normally expect a Goldstone mode associated with the spin rotational 
invariance about an axes in the plane of the spins. As we shall see in detail in the next 
section, the disappearance of the Goldstone mode from the single spin wave spectrum 
is a signal of spin -wave binding. At energies below - A,, spin waves are bound into 
pairs with momentum f Q ,  forming the twisted pair condensate. The spectral weight 
for the Goldstone mode a t  q = *& is accordingly transferred into the two-spin wave 
channel. The  corresponding length scale tQ - c/A, can be then loosely interpreted as 
a spin coherence length characterising the size of the bound-spin pairs. The binding 
gap A, can be interpreted as a pairing energy, or an excitation gap for out-of-phase 
rotations of the magnetisation and the twist pairing field. These gaps are given by 

(5.21) 

Similar expressions can also be derived from leading order Spin Wave interactions. In 
spin wave theory, the recovery of the Goldstone mode at  q = i& involves consideration 
of cubic spin wave interactions that also lead to  spin wave binding [32,33]. In the next 
two sections, we shall see how we can deduce the properties of these long-wavelength 
modes by considering long-wavelength distortions of the ground state. 

6. Goldstone mode structure: twist waves 

The biaxial character of quantum helimagnets has interesting consequences for Gold- 
stone modes which correspond to  long-wavelength twists of the magnetisation. Clas- 
sically, these distortions must be transverse to the local magnetisation, and local rota- 
tions about the magnetisation axes do not change the wavefunction of a helimagnet in 
the l a r g e 3  limit. In a quantum helimagnet, local rotations about the magnetisation 
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axis rotate the twist axis of the paired 'normal fluid', leading to  an additional set of 
Goldstone modes. We can construct these modes by considering the action of long 
wavelength twists on the ground state. Uniform rotations about the z or y axis in the 
untwisted reference frame are non-uniform in the twisted reference frame 

These operations generate new states that  are orthogonal, but degenerate with the 
ground state. Since the ground state is axially symmetric about the twist axis, the 
states .-(&)IQ)  and & ( & ) I Q )  are also orthogonal to  the original ground state. 

We now construct the Goldstone modes of the ground-state by applying an in- 
finitesimal rotation about the z axis in the twist reference frame, or infinitesimal 
twists U,(&&) and u,(ztQ) about the x and y axis. We define 

where the prefactor f i N S *  ensures a finite normalisation in the thermodynamic limit; 
then 

1 
At - -(atoT - atol)  3-fi 

Here we have rewritten the Bose fields b t q g  in terms of the spin quasiparticles and 
employed the result uqul$)  = 0. In the first expression, we have substituted uo = 
m. The last two transformations define the independent components of a rotations 
about axes perpendicular to  the plane of the twist. The quantity ZQ is a wavefunction 
renormalisation constant for the Goldstone modes, defining the overlap of the zero- 
mode for rotation about the y axis with the corresponding non-interacting spin wave: 

ZQ = ( Q l a ~ l Q ;  Y)  (6.4) 

where uQ = (aQt - aQl)/1/2 and 1Q;y) = At21$). For the classical helimagnet, this 
quantity is unity, but a t  finite S ,  due to  the spin wave pairing, uQ is finite and the 
spectral weight of the Goldstone mode in the one-magnon channel vanishes in the 
thermodynamic limit 

z -- - 0 .  
- NS' 
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We conclude that  the spectral weight of the Goldstone mode is entirely transferred to 
the the two-magnon channel; and equation (6.3) becomes 

1 
At  - -(atot - a to l )  

3-& 

Equations (6.6) are the generalisations of the Goldstone modes that appear in spin 
wave theory. We note that A,t(&Q) corresponds to  a twist of the normal spin fluid 
about the magnetisation axis, and is absent in the uniaxial classical magnet. 

Physical spin excitations above the fully projected wavefunction correspond to  the 
creation of particle-hole pairs of the unconstrained excitations considered above, one 
of which is absorbed by the vacuum. If we were to project out the singlet component 
of the original ground-state, then the action of the total spin operator on the ground- 
state produces an excitation of spin 1. We can interpret the excitation Atg  as a single 
delocalised spin flip. The excitations A t l  and At2  are 'double-spin flip' excitations, 
corresponding to  a bound pair of magnons with an antisymmetric wavefunction and 
total spin S = 1. The double spin-flip nature of the Goldstone modes is associated 
with the formation of 'pseudo-vector' order associated with the twist in the normal 
fluid of spins. These modes do not require the presence of a sublattice magnetisation, 
and might be called 'twistons'. An alternative way to think about these S = 1 
twiston excitations is to  regard them as collisionless versions of a second sound-spin 
wave [ll]. In a three dimensional helimagnet, the effect of temperature will be rather 
similar to  that  of quantum fluctuations, and the hydrodynamic version of these modes 
will constitute a second-spin wave. 

In the next section, we discuss the appearance of these three long-wavelength 
modes in the long-wavelength action for a quantum helimagnet. Last,ly, note that 
in the limit where the sublattice magnetisation S* vanishes, the first mode (At3) 
disappears, whilst the other two modes will become degenerate. These are then the 
Goldstone modes of a spin nematic, to be discussed in the last section. 

7. Long-wavelengt h behaviour: gauge inodes and sigma models 

In this section we focus on the long-wavelength behaviour of spin syst,ems, which 
we treat by direct analogy with the Landau-Ginzberg approach to long-wavelength 
modes in a superfluid. Rather than computing tjhe spinwave stiffness by explicitly 
distorting the orientations of the spins, we appeal to the rotational gauge invariance 
and introduce a spin vector potential field that is gauge equivalent to a twist of the 
spins. The spin wave stiffness is then the susceptibility that  relates an external spin- 
vector potential to  an induced spin current. This permits us to treat the spin current 
and the magnetisation on an equal footing. We shall show how it is possible to relate 
the microscopic motions of the spin quanta to the macroscopic susceptibilities. In 
particular, we shall show how the biaxial nature of helimagnets, and the uniaxial 
behaviour of collinear magnets and spin nematics enters in our approach. 
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Let x be the susceptibility tensor, and yl the spin wave st,iffness tensors for each 
direction ( I  = I ,d ) ,  then the long-wavelength magnetic response can be written 

where M is the magnetisation and 3, is the spin current in direction 1. The spin wave 
stiffness tensor y' is then the spin analogue of the London Kernel that relates vector 
potential to  mass current in superfluids. For compactness we shall use a four vector 
notation 

3p = (Mli,) 

y P  = ( -X,YO 

We begin by considering the 
dimensional antiferromagnet. In 
model 

(7.2) 
(I = 1,d) .  

rotationally covariant form of the action for a two- 
non-covariant form, the action is a non-linear sigma 

Now suppose we rotate t o  a rotated reference frame, defined by f i  - exp(-Ox)??, 
and introduce gauge fields ( B ,  A,) - - exp(-Ox)(d,, V,)O , ( I  = 1, d )  then the gauge 
covariant form of the action is 

In this form, the action has the gauge invariance 

Classically, the spin current and the magnetisation are then given by 

(7.5) 

where 

illustrating that  the spin wave stiffness is space and time are the susceptibilit,ies of the 
magnetic field and the spin vector potential. 
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We now generalise these considerations to a lielimagnet. Locally, the magnetisation 
of a helimagnet precesses in space 

6 = C c o s Q . R + j s i n Q . R  (7.8) 

where ( C , j ,  E )  form a local Cartesian co-ordinate system. The magnetisation axis 6 
and the twist axis then define a biaxial SO(3) order parameter. It is useful to  define 
the principal axes 

In the ground state, these vectors precess in space according to  VI<, = QfZ,  x ê , 
where the Qf are the components of the incommensurate magnetic wavevector. The 
covariant derivative must now be modified to  accommodate the spontaneous presence 
of a twist A, -+ A, - Q f Z , ,  so that 

In the long-wavelength limit, the action is expanded to Gaussian order in the deviation 
of the precession rate from its equilibrium value. Writing 

then the generalisation of the long-wavelength action to a helimagnet is 

ddz  dt { - X , ( W ? ) ~  + T : ( W ? ) ~ }  (7.12) 

where the space-time precession vectors are resolved along the local principal axes 
wp = U$&'. I t  is useful to  divide the susceptibilities into a contribution associated 
with the spin condensate and a part associated with the twisted normal spin fluid 

The spin condensate behaves as classical fixed lengt,li spins, so the susceptibilities 
parallel to  the magnetisation axis vanish 

MIc = 0.  (7.14) 

Since the normal spin fluid is uniaxial, the susceptibilities perpendicular to  the twist 
are equal, whilst the normal state stiffness along the twist axis is zero 

In the large-S limit, the normal component of the generalised susceptibilities vanishes, 
so the longitudinal susceptibilities are zero; the ratio of the transverse spin wave 
stiffness to  the transverse magnetic suceptibilities determines the classical spin wave 
velocities 
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In a helimagnetic structure a t  finite S, the normal component of the stiffness is finite 
and the ratio of the corresponding suceptibilities determines the velocity of the 'twist 
wave' c1 associated with twisting the normal fluid about the magnetisation axis 

= Y i / X l .  (7.17) 

The  magnetic susceptibility and spin wave stiffness tensors are determined by the 
response to  the gauge field A ,  = ( B ,  A , )  

(7.18) 

Unlike the antiferromagnet, however, the principal axes precess in space, giving rise 
to  a non-uniform component in the magnetic susceptibility and stiffness tensors. In 
the basis ( i , j , k ) ,  the susceptibility tensor has the form 

^ ^ A  

(7.19) 

where 

7[*, = $(7! 7 3  (7.20) 

and ( E ,  g) = (cos 2Q - z, sin 2Q * z). In a uniform external magnet,ic field 13, a non- 
uniform magnetisation develops with wavevector 2Q: M Z Q  = xZQ(z) - B [34]. The 
rotating component of the susceptibility is transferred to the magnetic permittivity of 
the system: p ( ~ )  = /I + 4 7 r x ( ~ ) ,  which gives rise to optical activity, as discussed in 
the final section. 

The non-uniform response is an appropriate order parameter for biaxial magnetic 
behaviour. There are actually two special uniaxial limits of the above behaviour where 
the non-uniform response vanishes: collinear antiferromagnets and spin nematics [15]. 
The special limit of the collinear magnet occurs when 2Q 0 and the twist vanishes. 
In this case, the normal component of the spinwave stiffness vanishes [-y;In = 0,  and the 
magnetic susceptibilities transverse to  the magnetisation are equal ;y2,3 = xI. In spin 
nematics, as discussed in detail in the next section, the magnetisation vanishes, but 
the spin fluid remains twisted. The classical component of the stiffness and magnetic 
susceptibility accordingly vanish and the stiffness along the twist axis (y3) is zero. 

Let us now consider how these various terms appear from our microscopic calcu- 
lation. If we expand the gauge invariant form of the Hamiltonian 

H [ A , ]  = 5 1 JijSi  exp (- A,  dR,x )  Sj  - B j  Sj (7.21) 
j 

in powers of the spin vector potential, we may write 
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Here 

1 N&(z) = 5 E J ( R ) ( R ' ) 2 [ S a ( z ) S q z  + R) - 6@S(Z) ' S(Z + R)] .  
R 

(7 .23)  

The derivative with respect to  the spin vector potential yields the spin current 

By analogy with superconductors, the second term is the 'diamagnetic' part of the spin 
current, which gives rise to  an instantaneous response to an external twist field. The 
second term is the 'paramagnetic' spin current which develops as the spin wavefunction 
responds adiabatically to  the presence of the external twist field. From the second 
derivative of the partition function we may compute the linear response to  a spin 
vector potential in terms of a diamagnetic and a paramagnetic contribution 

y'(z, z ' ; ~  - T ' )  = N ' ( Z ' ) ~ ~ ( Z  - z') - (Tjl(z)jl(z')) 
(7 .25)  

where we have used the shorthand z ( z , ~ ) ,  S3(z) E 6 = 6 ( ~ )  and suppressed the 
spin indices. In a spin fluid with unbroken rotational invariance, the long time para- 
magnetic response must exactly cancel the diamagnetic term at  long times and long- 
distances, renormalising the spin wave stiffness to  zero. When rotational gauge invari- 
ance is broken, this cancellation is no longer perfect, leading to  certain non-vanishing 
components of the stiffness tensor. This behaviour is completely analogous to  neutral 
superfluids. Note that the spin analogue of charged superfluids does not exist, since 
there are no dynamical spin gauge fields. If twist gauge field was dynamical, then this 
incomplete cancellation would lead to  the spin analogue of the Meissner effect. 

In a classical helimagnet S(z) = SZl(z) (7 .8) ,  and 

(s(z)~s(z + R ) P )  = S~[Z~(Z) ] " { [ ;~ (Z) ]P  COS Q - n + [ z ~ ( z ) ] P  sin Q .  n). (7 .26)  

Substituting into the expressions for the spin current,, and 'diamagnet,ic' stiffness we 
find 

where 

(U = 1) 
(U = 2 , 3 ) .  

(7 .27)  

(7.28) 
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The first equation in (7.27) indicates that  although there are local spin currents along 
individual bonds inside the helimagnet, the long-wavelength uniform component to  
these currents is absent in equilibrium, as expected on physical grounds. The absence 
of a classical stiffness about the magnetisation axis (4 = 0) is evidence of the uniaxial 
nature of the classical helimagnet. Finally, note that there are no 'diamagnetic' con- 
tributions to  the susceptibility (N, = (O,N()), as the magnetic field couples linearly 
to  the spins. 

Once quantum fluctuations are reintroduced, the paramagnetic part of the stiffness 
develops and the anisotropic short-range spin fluctuations impart biaxial character to 
the stiffness tensor. We now compute these corrections in the Schwinger boson scheme. 
We shall divide the diamagnetic component of the stiffness N' into a condensate 
component and a component associated with the anisotropic nature of the 'normal' 
fluid 

"(z) = N' + [S*]2$'(z) (7.29) 

where S* is the renormalised magnetisation and the condensate part has the form 
given in (7.27). To calculate N' and the fluctuating 'paramagnetic' component to  the 
susceptibilities, we need t o  express the paramagnetic component of the spin current 
in terms of the Bose fields. For this purpose, we adopt a Ballian Werthammer [14] 
notation for the Schwinger boson fields, writing 

(7.30) 

The commutation algebra of these spinors is 

where the matrices T = ( T ~ ,  T ~ ,  T ~ )  denote Pauli matrices that act in particle-hole 
space. In this form, the mean field Hamiltonian can be written 

(7.32) 

where the q vector associated with the Bose fields is restricted to  on half the Brillouin 
zone to  avoid double counting. The mean field propagator is then 

(TQ,(T)Q+,(o)) = -T C G(q ,  iu,)T3 exp(-iv,r) 
11 

where the projection operator is 

(7.33) 

(7.34) 
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with U, and vq as defined in (4.1). A useful quantity to know is the density matrix, 
which can be obtained directly from the Green function 

aP 
( q T 3 q )  = {n(wq)P+(q) - (.(U,) + 1)P-(q)) 

(7.35) 
= i{ 1 + coth[ i&~,][(u~ + w;)r3 - 2iupv, T~ €3 u ~ ) ] } ~ ' .  

The  relationship between the Bose operators in the twisted ( b )  and untwisted (i) 
spin reference frame is 

(7.36) 
U 

where Pu = [1+ m 3 ] / 2  projects out the up and down spin components of the spinor, 
so in the untwisted reference frame, the Hamiltonian X ( q )  is replaced by X ( q + u Q / 2 ) .  
Suppose we introduce an external magnetic field and an external twist field A, ,  then 
qI  + q, - c - A,/2,  and the spin fluid Hamiltonian becomes 

f i '[A] = G t q ~ 3 X [ q ,  + (&1u3 - A, * ~ ) / 2 ]  6, - B ,  * S-, (7.37) 
q E  ?BZ P 

where 
u -  s, = ' + k - q / 2  ' 3 T 8 k + q / 2 .  

kE 4BZ 

(7.38) 

To determine the spin currents and the intrinsic stiffness of the paired spin fluid, we 
expand (7.37) in a gradient expansion to second order 

(7.39) 
k [ A ]  = f i - C A , ( R ) . j , ( R ) +  , C A l ( R ) . N ' . A l ( n ) + O ( A 3 )  1 

R R 

where A, = ( B , A , )  and j , ( R )  = ( S ( R ) , j , ( R ) ) ,  and 

(7.40) 

Rewriting N' in terms of the twisted Bose fields, and substituting expression (7.35) 
for the density matrix gives 

(7.41) 
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where 

(7.42) 

Next, consider the spin currents. Resolving them along the rotating reference axes 

Here the matrix elements are 

and 

(7.43) 

(7.44) 

(7.45) 

(7.46) 

and j,” = jk k iji, a* = $[a’ rt ia’]. 

diagonal 
In the twisted reference frame, the dynamical spin correla.tions are uniform and 

(Tj,X (R)j,x (0)) = T C?,”((?) exp[i(q. n - Y n 7 ) 1  (7.47) 
q 

where R E (R,  7) , q = (q ,  bn) and ?f = (j? (q) j ; , ! ( -q) ) .  In the untwisted reference 
frame, spin correlations take the form 

( T j p ( z ’ ) j , ( 4  = C.̂ x(.’).̂ x(.) (Tj,x(. - q” (7.48) 
x 

Averaging over z - z/ = R gives 

where spin indices have been suppressed, and 

( A  = 1 ,2 )  
( A  = 3). 

(7.49) 

(7.50) 
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The full expression for the moments of the stiffness tensor is then 

yf = N; - y",. (7.51) 

The paramagnetic spin current correlations can be determined to  one loop approxi- 
mation from the Bose Green functions 

where k = (IC,  ifl,). Once a spin condensate develops, the Bose field acquires an expec- 
tation value, and the fluctuations may be separated into a condensate and a normal 
component. To compute the normal component to  the fluctuations, it is sufficient to  
take the zero temperature limit of (7.52), neglecting the zero frequency poles in the 
Bose functions and setting coth[/3wq/2] by one in the final result. Evduating the Mat- 
subara sums in (7.52), the zero temperature normal component of the zero frequency 
current correlation functions is then 

(7.53) 

The evaluation of the traces yields the results 

[X31n = 0 
(7.54) 

for the spin susceptibilities, and 

for the spatial correlation functions, where U* = uk* and vf = v k * .  Off-diagonal 
components of the susceptibility and as expected, the susceptibility component of the 
normal fluid along the twist axis vanishes. 

Since the fluctuations in the condensate spin and current are entirely transverse to 
the magnetisation and the condensate spin current vanishes a t  long wavelengths, the 
condensate contribution to long-wavelength spatial spin current fluctuations vanishes, 
so [;U'], = 7'. Let us consider the total normal contribution to  the magnetic stiffness 
N' - y'. Since the normal fluid is axially symmetric about the i axis, we expect the 
stiffness of the normal fluid about this axis to  vanish 

[7LIn = lv; - y; = 0. (7.56) 
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This provides a consistency check on the calculation. Integrating expression (7.41) for 
Njz by parts we can rewrite it in the form 

confirming tha t  the axial symmetry of the normal fluid is conserved in our calculation. 
This cancellation does not occur in the normal fluid stiffness perpendicular to the 
twist axis unless the  magnet is bipartite. Indeed, the quantum exchange gap in the 
single magnon spectrum around q = Q ,  has the effect of suppressing the fluct,uations 
perpendicular t o  the  twist axis, reducing y i  relative to N i ,  thereby generating a finite 
stiffness 

[din = NL - % ( Q )  > 0. (7.58) 

Let us finally consider the condensate contribution to  the magnetic susceptibility. 
To do this, in the  magnetisation operator we replace 

QtP + Qt, + (Qt0)6,,. (7.59) 

Since (S(z)) = S*El(z), the condensate expectation value is 

( ~ , t )  = G ( 1 , 1 , i , - - i ) .  (7.60) 

Fluctuations in the condensate are transverse to the magnetisation, so the condensate 
fluctuation magnetisation is 

[M(z ) l ,  = M 2 ( 4  %(x) + M 3 ( 4 ,  e^3(2) 
(7.61) 

so the condensate spin susceptibility in the twisted coordinates is then 

where A = (Qo)(Qt)r3 = [ 1 + d  @ ~ ~ ] [ l - a ~ @ r ~ ] .  Evaluating the trace, the condensate 
susceptibility is found to  be 

(U = 1) 

- A,) ( U  = 2) 

S*/( io  + A,) ( U  = 3). 

(7.63) 
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In the large-S limit, the condensate contributions to  the stiffness and the susceptibility 
dominate, and in this limit 

(7.64) lA(J(2Q) + J(O))/2 - J(Q)I (U = 2) 
(U = 3). x u = (  1 / ( J ( O )  - J ( Q > >  

Taking ratios of the spinwave stiffness (7.28) to  the susceptibility, we find 

(7.65) s*[(J(2Q) + J(O))/2 - J(Q)IV?J(Q)P 
S*[(J(O) - J (Q) ) lVJ (Q) /2  

(U = 2) 
(U = 3). 

1 2 -  I 
[ C U I  - Ya/Xa = 

These velocities correspond precisely to  those found by expanding the spin wave spec- 
trum about q = 0 and q = Q respectively. 

Finally, let us summarise the combined classical and quantum cont,ributions to 
the magnetic stiffness and the magnetic susceptibilities in the biaxial helimagnet The 
stiffness components take the form 

whilst the magnetic susceptibilities are 

(U = 3) 
(7.66) 

(7.67) 

Our results show that fluctuations themselves can drive anisotropy and contribute 
positively to  the stiffness of the order parameters. The fluctuations perpendicular 
to  the twist are suppressed by the effects of order from disorder, giving rise to  an 
additional fluctuation contribution to  the stiffness about axes perpendicular to the 
twist. For a bipartite lattice, this quantity is zero. We now go on to  discuss the effects 
of this stiffness in situations where the sublattice magnetisation vanishes. 

8. Spin nematic 

In the special limit where the spin S is sufficiently small so that the magnetisation 
drops t o  zero, the stiffness about the twist axis $, vanishes. However, the stiffness 
about the axes perpendicular to  that  of the twist remain finite, and are given by (7.58). 
In this state, the twist plane remains rigid, and rotational invariance is broken via long 
range order in the four point twist correlation function 

where I y ( X )  = S ( X  + Y/2) x S ( X  - Y/2) is the twist opemtor. However, the spins 
in the twist plane have a finite spin correlation length < 

( S ( Y )  * S(0)) = F(Y)(cos Q * Y )  - S2 (cos Q - Y) exp( - IY I/<). (8.2) 
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This state is then a 'spin nematic'. It may be visualised as a 1ielima.gnet where 
quantum fluctuations in the pitch dephase the spins, giving rise to  a distribution of 
magnetic wavevectors with variance (6Q2) = (see figure 4.) Unlike a helimagnet, 
the absence of a magnetisation implies that  this state is translationally invariant. The  
residual twist degrees of freedom are now described by an O(3) sigma model 

I = - d d z  dt ( c / ) ~ (  V17)2  - (a t7 ) ' }  " J  2 { 
where 7(z) = G3(z) and x = xa, ( c ~ ) ~  = 7f/xa ( U  = 1,2) relate the stiffnesses to  those 
calculated in the last section. A completely analogous sequence of phase transitions 
is well known in the theory of biaxial nematic liquid crystals. In the phase diagram 
of nematic liquid crystals, the biaxial phase is separated from the isotropic phase by 
intermediate uniaxial phases [35]. The presence of a long-range pseudo-scalar order 
parameter in spin systems has been previously considered by Andreev and Grishchuk 
[36]. In this particular realisation, we explicitly identify this uniaxial order parameter 
with a twist associated with incommensurate correlations. 

(BO2) - 1/t2 
Schematic drawings of (a) a helimagnet and (6) a spin nematic, these Figure 4. 

having zero and finite pitch variance, respectively. 

In the quantum fluids analogy, this means that the spin boson density S is too small 
to  sustain a spin-Bose condensate, but the paired normal fluid still preserves a twist. 
Microscopically, the presence of a twist without a magnetisation can be understood 
from the relationship between the twist and the pairing correlations in the spin fluid. 
The twist operator may be written in the untwisted reference frame as a product of 
singlet and triplet pairing fields 

Si x Sj = i [ B t . . B . .  '3 '3 + B t . . B . . ]  $3 '3 = - $ [ D t  13 . . D . .  13 + D t a j D i j ]  (8.4) 

where ( D t i j , D t d j )  = - i b t i ( i , r ) b j .  In mean field theory this becomes (Si x Sj) = 
7i sin(Q.Rij)F(Rij) ,  where 

(8.5) 
1 1 

F ( R i j )  = ;zx'(R) = ~ [ q k - ~ q k  + ~ y k - ~ a k ]  c o s q . R i j .  

Thus the presence of a twist and its corresponding stiffness is not linked to  the devel- 
opment of a sublattice magnetisation. 
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Microscopically, the wavefunction for this state is a twisted RVB wavefunction 

where f (R)  = E, f , exp ( iq -R)  is short-range with f, < 1, and hence there is no 
sublattice magnetisation. This state is accordingly a ‘twisted spin liquid’, which breaks 
parity, but unlike a magnet, it does not violate time reversal symmetry. Nevertheless, 
since the state still breaks rotation symmetry, the gapless twist longitudinal Goldstone 
mode with velocity cl will persist even though the sublattice magnetmisation is zero. 

This spin nematic state is a candidate wavefunction for the spin-; frustrated 
Heisenberg model in the ‘disordered’ regime where there is no sublattice magnetisa- 
tion. In principal, such a state can exist even in the absence of a bare third neighbour 
coupling, due to  the renormalisation of J ( Q )  by fluctuations. Another possibility, 
motivated by studies of SU(N) magnets, is a dimer ground state [ 3 , 4 , 3 7 ] .  Because 
our methods are not sensitive to specific spin values, we cannot incorporate both can- 
didates in our treatment a t  the present time. However, if the mechanism for dimer 
formation derives from tunneling between different topological configurations of the 
magnetic moment, a coexistence of dimers with a spin nematic phase is unlikely. The 
presence of an underlying incommensurate structure will lead to desiructzve interfer- 
ence of the hedgehog configurations that generate the dimerisation, and dimer order 
will melt on long length scales. 

Recent finite size numerical studies of the J,-J,-J3 model indicate that both the 
twist and the dimer order parameters are large in the intermediate region with no 
sublattice magnetisation; furthermore xsxs scales properly with the system size [38] 
and is further enhanced when J3 is increased from zero. A variety of groups have also 
found some evidence for static valence bond ground states in the same regime [38,39] .  
A possible explanation of these seemingly contradictory results it that the short-range 
dimer order persists up to  length scales comparable with the quantum exchange length. 
More extensive numerical work is needed to decide these issues. 

9. Discussion 

In conclusion, we have presented a quantum fluids approach to incommensurate mag- 
netism. Exploiting the local gauge symmetry associated with the conservation of spin, 
we have treated the quantum Heisenberg antiferromagnet as a spin superfluid. This 
analogy operates on both short and long length scales; for example, there are spin ana- 
logues for both rotons and the Josephson equation. Table l in section l summarises 
the most important parallels between antiferromagnets and neutral superfluids. The 
aim of the present work has been to develop a rotationally invariant approach to 
the general class of helimagnet; such a treatment, must capture the essential physics 
of spin fluctuations, in particular the generalised self-consistent Weiss exchange field 
and Villain’s fluctuation-stabilised order. Here we check the results of our extended 
Schwinger boson technique whenever possible with those of known methods, specif- 
ically spin wave theory (to order l/S2) and Polyakov scaling, before studying cases 
where global spin rotation invariance is partially or fully restored. In particular, our 
pairing equations are exact in the large-S limit, and our results reproduce the clas- 
sical Goldstone mode structure, the quantum exchange gaps and the Ising transition 
temperature [30] derived from scaling. 
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Within a spin superfluid picture of Heisenberg antiferromagnetism, the spin fluc- 
tuations are described by the normal fluid and classical magnetism is the condensate. 
Following Villain, we emphasise that spin fluctuations can select new forms of long- 
range order independent of moment development; the fluctuation-selection of a twisted 
state from the manifold of classically degenerate O(6) magnets provides an example. 
Specifically, we show that  in a helimagnet the two fluids each have uniaxial order, one 
associated with the twist and the other related to  the sublattice magnetisation. The  
fluctuation-stabilised helimagnet then has baaxial order; it can melt to  an isotropic 
state via two uniaxial phases, the Nee1 magnet or the spin nematic, [15], completely 
analogous to  the biaxial-uniaxial transition of liquid crystals [40]. The spin nematic 
has the interesting property of having a broken O(3) symmetry without breaking time- 
reversal symmetry; specifically non-local spin order parameters exist in the absence of 
a local moment. 

There are several experimental signatures of a spin nematic. At low temperatures, 
the twist Goldstone modes will lead to  a power-law specific heat capacity C, -Td .  In 
two dimensions, the development of long-range twist correlations will be accompanied 
by a peak in the specific heat capacity a t  temperatures of order the quantum ex- 
change energy. The elastic neutron scattering will contain no Bragg peak, but will be 
characterised by a broad Lorentzian maximum around the incommensurate magnetic 
wavevector &Qo 

The usual Born scattering of neutrons is only sensitive to  the two-point spin corre- 
lations; in principle, however, small-angle multiple neutron scattering can be used to  
probe the four-spin twist-twist correlation function. A magnetic field applied paral- 
lel to  the twist axis of the nematic will induce a net chirality Si - (Sj x S j ) ,  which 
is known to generate a left-right anisotropy in the scattering of polarised neutrons 

P-type spin nematics, like cholesterics and helimagnets, will be optically active. 
The magnetic order in a spin nematic decays on a slow time scale t - E / c , ,  where 
c, is a spin wave velocity. Therefore, given single spin nematic domains of size L ,  
where L << ((c/cs) - lo4<, electromagnetic radiation will perceive a spin nematic 
as a disordered helimagnet with distribution of pitch lengths. Following (7.19), the 
magnetic permittivity tensor will contain a non-uniform component of the form 

( U s c  - (k x w e pn) [411. 

W P ( R )  - & ( X I  - x 2 ) e V + ? ( W  (9.2) 

and, as in cholesterics, this generates optical activity. It is then straightforward to  
extend the standard liquid crystal analysis. The basic propagation equation is 

02E(rc) = -( w2/c2)p(x) * E(rc). (9.3) 

Following de Vries [42] , for an incident plane-polarised electromagnetic wave parallel 
or antiparallel to  the twist axis, the optical rotation per length L is 

where S(q)  - l / ~ ~ [ ( q - Q , ) ~ + ~ - ~ ] .  Like the cholesterics case, the rotation handedness 
is independeni of the direction of propagation, as opposed to  a Faraday rotation. 
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Furthermore, a plane-polarised beam reflected from a spin nematic will acquire a 
circularly polarised component with the same handedness as the nematic [42]. For 
optical frequencies the dichroism is weak and scales as -w4,  but a t  x-ray frequencies, 
as in helimagnets, we expect the phenomenon to  become strongly resonant [43,44]. 

We are aware of two distinct possible realisations of spin nematic behaviour in 
nature. The  first is provided by the nuclear magnetism of two dimensional He3 films 
adsorbed on graphite. Recently, Elser [45] has postulated that these nuclear spins 
can be described by a S = Heisenberg model on a ‘Kagome’ lattice, for which the 
classical ground state is infinitely degenerate. Another example is the recently discov- 
ered chromium (S = $) magnetoplumbite compound SrCr,-,Ga,+,O,,; it consists 
of parallel planes of chromium atoms arranged on a Kagome lattice [46]. This system 
does not order magnetically, and displays a T 2  specific heat [47,48], as expected for 
a two dimensional spin nematic. A close comparison of theory and experiment is in 
progress. [48,49]. Though our calculations have been specific to  two dimensions, 
they should apply equally well to  known three-dimensional helimagnets, where there 
is the possibility of finite temperature spin nematic phases above the Curie tempera- 
ture. Frequently, these systems make the transition to a commensurate magnet by an 
unraveling of the spiral order. Those cases where the unraveling does not occur, or is 
only partial, such as erbium, holmium or dysprosium are good candidates for a finite 
temperature spin nematic. 

Our discussion has been limited to  the case of pure magnets; however some of the 
techniques developed here may be useful in the study of doped Mott antiferromagnetic 
insulators. There, charge fluctuations drive an incommensuration in the magnetic 
structure [50]; though several attempts have been made to  describe these twisted 
phases with Schwinger bosons, the use of mixed parity pairing, a necessity in order to  
recover the correct large S Goldstone mode structure, has not yet been employed. 

We end with the amusing possibility of a superconducting spin nematic; a spin 
nematic violates inversion symmetry but not time-reversal symmetry, and thus can 
can readily coexist with BCS pairing, forming an incommensurate superconductor. 
Such a superconductor would involve mixed parity pairing due to the presence of the 
magnetic twist [51]. Since this state violates PT symmetry, the Landau-Ginzberg 
theory permits terms which directly couple the vector potential to the magnetic field. 
The presence of a magnetic field perpendicular to  the twist axis should result in the 
flow of charge along the direction of the Q vector. We hope to  investigate these 
possibilities in future work. 

N o t e  added in proof. After submission of this paper we became aware of related work by Schulz [ 5 2 ]  
and Nersesyan and Luther [53] on spin nematic behaviour in generalised Hubbard models [54]. 
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Appendix 

Here we derive expressions for the paramagnetic spin currents. We begin with the 
field dependent spin boson Hamiltonian in the untwisted reference frame 

&'[A] = [al + (Q1u3 - A, - cr) /2]  8,  - B ,  - S-,. ('41) 
q E  iBZ P 

Expanding this expression in a gradient expansion in A,  then to  first order in A 

where A,, = ( B , A , ) ,  j, = ( M , j l )  and the  paramagnetic spin current is j , ( R )  = 
E, i, ( 4 )  exp(i4 * R),  where 

Here the curly parentheses denote an  anticommutator; Resolving the spin currents 
along the  fixed axes (C, j, L), j , ( R )  = j ; l C +  j;2j+ j;", then the components j i a (q )  
are given by 

where 

hf = i ( h q + Q / 2  + h q - Q / 2 )  

A, = $(Aq+Q/2 - Aq-Q/2). 

Let us now resolve the spin curents along the precessing axes &,(I?) 

j , (R)  = Cj,a(R)e^,(R) 
a 
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where 

Finally, noting tha t  

where Po = [1+  aa3]/2 projects out the up and down spin components of the spinor, 
we note tha t  for the spin independent matrix 7 3 g k  

Ik k - ( q f Q ) 2 * '3 k ' k + ( q f Q ) / 2 = ' k - q / 2 '3'k ' k + q / 2 ( A l l )  

whilst 

* t k - q / 2 f f 3 % ( k  + f 1 3 Q / 2 ) ' k k t q / 2  = q t k - q / 2 u 3 3 1 ( k ) ' k k + q / 2 .  (A121 
k € i B Z  k €  iBZ 

Using these results, the spin currents can be re-written in terms of the Bose fields in 
the twisted frame 

U3 
jl"(q) = q t k - q / 2 ' 3 ~ v , % ( k ) q k + q / 2  

k €  $BZ 

Written out more explicitly in terms of the individual Bose fields b t q o ,  the spin currents 
are 
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where IC* = k f 912. Similar expressions also hold for j, = M ,  when Vk31 and V k X  
are replaced by the identity. 
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